
Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 1

Arcticus Systems

Arcticus – The Provider of Rubus®

WHITE PAPER

2016-01-19

Kurt-Lennart Lundbäck, John Lundbäck, Harold “Bud” Lawson,
Mikael Sjödin and Saad Mubeen

1 Introduction
Arcticus Systems AB delivers and supports state-of-the-art safety critical embedded real-time system
products and services. The products are called Rubus (the name of a red arctic berry and a registered
trademark of Arcticus AB).

The Rubus suite provides a collection of methods and tools for the Model Driven Development of real-
time systems. Rubus enables the designer to graphically describe systems as interconnected components.
These interconnected components (following a hardware paradigm called Software Circuits) define the
structure of the application system that can be analyzed and synthesized entirely within the Rubus
environment.

Rubus integrates modelling, timing analysis, code synthesis (including a dedicated Real Time Operating
System (the Rubus Kernel)) and simulation of the combined application software and the Rubus Kernel.

A unique property of the Rubus suite is the ability (at pre-runtime) to analyze and verify both time driven
deterministic (triggered) and event driven non-deterministic (triggered) application tasks with respect to
timing properties and resource utilization.

Another important property of the Rubus suite is the ability to develop the real-time application software
independent of the target processor and execution platform.

The Arcticus strategy is to work in close cooperation with customers by providing our products and
expertise to assure the successful development and support of their embedded real-time applications.
Further, to be a leading developer of state-of-the-art real-time products based upon cooperation with
leading universities, especially with Mälardalen University, and by active participation in national and
international research programs.

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 2

In this white paper, the evolution of Rubus, the driving concepts used in Rubus, a description of the Rubus
products, the research contributions from Mälardalen University, the Arcticus approach to customer
projects and on-going research and development projects are presented.

2 The Evolution of Rubus
Arcticus Systems AB was established as a Swedish corporation in 1985. The first product (called O’Tool)
provided a real-time kernel for facilitating the implementation of event-driven real-time systems. The
O’Tool product had a significant international market including such important customers as Rank Xerox
(deployed in copying machines) and ABB (in power control equipment).

The Rubus Kernel was first introduced for industrial use in 1996. The concepts utilized in Rubus evolved
from previous experiences with O’Tool as well as Arcticus participation in the Swedish Development
Agency (NUTEK) VIA (Vehicle Internal Architecture) project during 1992-95. The partners in the project
included, in addition to Arcticus, Saab Automotive, Volvo, Mecel AB, SICS, Uppsala University, Chalmers
University and Lawson Konsult AB.

Earlier experiences with time driven deterministic execution in Automatic Train Control (ATC) were used
as a primary input to the VIA project. Harold “Bud” Lawson was the architect of the on-board system
provided by ITT Standard Radio to the Swedish Railways (SJ). This product was developed during the latter
part of the 1970’s and has been installed in the majority of locomotives in Sweden starting in 1981. The
program code was surprisingly minimal due to the utilization of the hardware like paradigm used in its
development (became known as Software Circuits (SWC)). The time determinism and the small amount
of program code led to significant advantages in exhaustive testing and verification of the production units.
The Standard Radio on-board system is now owned and further developed by Ansaldo of Italy and is often
supported by the original developers at Teknogram (now owned by ÅF) in Borlänge, Sweden. Ansaldo has
used the software architecture for developing other products including the provisioning of the ATP (P for
Protection) system used on the New Jersey Transit. Since its inception and updating in the 1990’s for
X2000 trains, this architecture has remained stable and delivered the reliability required for the on-board
ATC function. The results of this product development have been reported in (Lawson, et.al, 2001),
(Lawson, 2008) and (Lawson, 2010).

The VIA project identified the need for a mix of time-driven (became known as Red) and event-driven
(became known as Blue) real-time tasks. As a central part of the VIA project, the Rubus Kernel was
developed to support a mix of both forms of real-time application tasks. Red application tasks are
scheduled periodically and have guaranteed execution time slots. Blue application tasks are executed
within residual time in the time slots. The VIA project based on the use of the Rubus Kernel and a proposed
time deterministic network communication defined a distributed real-time infrastructure for vehicles
called BASEMENT. The results of the project where reported in two articles (Hansson, et.al, 1996a and
1996b).

Arcticus established an agreement with Mälardalens University in 1997 and further research and
development led to the development of an off-line scheduler by Christer Norström (formerly Eriksson)

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 3

now CEO at SICS (Swedish Institute for Computer Science) and Kristian Sandström. This work was reported
at an IFAC/IFIP conference (Eriksson, et.al, 1997). This effort formed the basis for the eventual Model
Driven Development product.

A major breakthrough for Arcticus in 1996 was the selection of the Rubus Kernel, as the real-time operating
system, for the implementation of a Limited Slip Coupling Device (for four wheel drive vehicles) by Haldex
in Landskrona (now owned by BorgWarner TorqTransfer Systems). In addition to Arcticus, Lawson Konsult
AB, Uppsala University and Mälardalens Högskola participated in this project. After several prototype
iterations the first LSCD was delivered to Volkswagen. Since then it has evolved into a significant product
that it utilized in most all four wheel drive vehicles in the world. The system is now owned by Borg-Warner.

In 1997, both Volvo Construction Equipment in Eskilstuna and BAE Hägglunds in Örnsköldsvik decided to
deploy the Rubus Kernel in their products. These customers active cooperation with Arcticus led to the
development and deployment of the Model Driven Development products (Rubus Tool Suite).

Volvo Construction Equipment (VCE) has deployed the Rubus Kernel in several of its products. Most
recently, it has been decided that the Rubus Kernel should be made certifiable according to the
international standard ISO 26262 (Road Vehicles – Functional Safety). As a part of this effort, Arcticus has
developed its QMS (Quality Management System) based upon the now harmonized ISO/IEC/IEEE 15288
and ISO/IEC/IEEE 12207 on Systems, respective Software Life Cycle Processes.

Arcticus has participated, with several of their customers and research partners, in KK-Stiftelsen (The
Knowledge Foundation) sponsored projects, including MultEx, EEMDEF and FEMVA. Arcticus has also
participated and continues to participate in a number of EUROPEAN-research projects including
TIMMO2USE, CRYSTAL and EMC2. All of these projects have contributed to the progress in providing the
state-of-the-art Rubus product suite.

As a result of the long-term cooperation between Arcticus and Lawson Konsult AB, an article describing
their contributions to Highly Reliable Real-Time Systems was presented at the 3rd Nordic Conference on
Computing (Lawson and Lundbäck, 2010). This publication also includes an overview of the Arcticus
products and their customers.

3 Driving Concepts
Based upon the evolution of Arcticus products, a few central concepts have evolved that drive the product
related thinking as follows:

3.1 Software Circuits
A hardware analogy where component data and control flow behave as a chain of circuits. This promotes
the analysis and verification of application function timing constraints and resource utilization that is
accomplished by clearly separating data and control flow mechanisms. The model of a software circuit is
shown in Figure 1.

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 4

Figure 1: Model of a Software Circuit.

The Construct and Destruct logic are terms from Object Oriented languages that describe activation,
respectively, deactivation of the circuit.

3.2 Time Triggered, Event Triggered, and Interrupt Execution
Software Circuit execution is triggered based on these three categories. The ability to mix both
deterministic (time triggered) and non-deterministic (event triggered) as well as treating interrupt
execution is a unique aspect of the Rubus product suite.

3.3 Model Driven Development
Model-Driven Development (MDD) has had an increasingly important role in designing and
implementing real-time embedded systems. Due to the complexity of real-time systems, the
development must rely more and more upon automation and the interoperability amongst models such
as Simulink. The Rubus Tool Suite provides an integrated tool-chain that includes system modelling,
design, analysis and synthesis providing the features portrayed in Figure 2.

 Figure 2: Rubus Conceptual Models.

The three models provide various viewpoints reflecting all of the necessary information concerning the
development, analysis, synthesis and execution of real-time applications.

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 5

 RCM - Viewpoint of the developer/development team model: The developer designs the system,
in a platform independent manner that focuses upon the application. Timing and resource
constraints are expressed in the model.

 RAM - Viewpoint of the analysis model: The resulting RCM design is formal and lends itself to
static analysis that is mapped to the actual run-time platform. The analysis includes type checking,
execution order, real-time requirements such as response times and worst-case execution times.
This analysis helps in reducing late, costly and time-consuming testing efforts of, e.g., temporal
errors. Furthermore, mathematical models and supporting tools provide formal evidence of
fulfilling requirements.

 RRM - Viewpoint of the run-time platform model: The RCM design together with the RAM
analysis is utilized to synthesize the code for the actual run-time platform. This automated
synthesis prevents error prone and costly integration errors. The run-time platform may be the
Rubus Kernel or some other Real Time Operating System.

These concepts have proven to be effective in providing scalability from small to large real-time
applications implemented by various organizations.

4 Rubus Products
The main products; namely Rubus Tool Suite and Rubus RTOS that Arcticus delivers to its customers are
portrayed in Figure 3. It is important to note that the real-time application developed using Rubus Tool
Suite can be executed on a variety of real-time platforms, that is, various hardware and various real-time
operating systems.

Figure 3: The Rubus Product Suite.

4.1 The Rubus Tool Suite Product
The Rubus Tool Suite (Integrated Component Model Development Environment) that is utilized by
customers in developing, simulating and implementing time critical and non-time critical applications.

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 6

Rubus Tool Suite provides for the implementation of the Model Driven Development concept by providing
the following properties:

 Raises the level of abstraction thus addressing the increasing complexity problem for embedded
systems software.

 Formal and early reasoning. The system architecture/design can be described early in the system
life cycle as high-level models and alternative designs can be rapidly developed and analyzed to
try out different solutions. Note that the design can be analyzed without writing any source code.
Furthermore, system model documentation facilitates maintenance and further development
activities.

 Code synthesis. There is a separation between the real time model and the program code. The
user works on a platform independent model, then selects the specific target platform, and the
Rubus Tool Suite tool generates the framework code. Productivity is increased since the auto-
generation automates code generation that is often error prone.

 Traceability. The system architecture/design documentation is kept up to date with the
implementation resulting in traceability from design to implementation and vice versa.

Rubus Designer is used to interactively describe and analyse the application component structure as
Software Circuits in forming a Rubus Component Model (RCM), as portrayed in Figure 2. The user
defines the input and output ports of components and connects the Software Circuits in a manner
similar to hardware diagrams as illustrated in Figure 5.

Figure 5: Combining Software Circuits

The Rubus Analysis Model (RAM) was developed to be incorporated in the Rubus Designer, in cooperation
with research partners at Mälardalens University and is provided as a part of the Rubus Designer tool. This
initially provided the basis for an off-line scheduler as described in (Eriksson, et al, 1997). Further
development included response-time analysis of tasks with offsets (Mäki-Turja, et.al, 2004), shared-stack
analysis (Hänninen, et.al, 2008) and response-time analysis of Controller Area Network (CAN) and its
higher-level protocols (Mubeen, et.al, 2015), as well as distributed end-to-end response time and path
delay analysis (Mubeen, et.al, 2013).

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 7

Using the timing analysis support in Rubus Designer, it is possible to analyze a single node by calculating
the response times of tasks and comparing them with corresponding deadlines. Rubus Designer also
supports the analysis of end-to-end delays (such as Data Reaction and Age) for distributed systems (see
Figure 6 below). The analysis is based on advanced data path analysis algorithms and supports multiple
networks, black box nodes (whose internal software architectures are not available), message interference
and redundant data paths. The internal execution models of nodes are taken into account if available. It is
possible to analyse network communication based on Controller Area Network (CAN) or Ethernet by
calculating the response times of messages. This distributed analysis is a unique property provided by the
Rubus Designer.

Node A

Node B

Node C Node D
Black Box

Constraints
 End Point

Constraints
Start Point

Msg X

Msg Z

Msg YNetwork 1 Network 2

End To End Constraints
 Data Age
 Data Reaction

Figure 6: End-to-End Network Analysis

Rubus Inspector provides for platform independent formal and semi-formal “Model in the Loop” testing
environment used to test the Software Circuits of the Rubus Component Model (RCM). It provides for unit
testing as well as for sub-system or complete system testing. Test inputs are provided by the user
however, it is also possible to generate tests that utilize Simulink and Matlab environments.

Rubus Analyser provides for the user-friendly presentation of off-line and on-line information about the
real time execution behavior of the system. It enables connection with the development host system to
download information such as trace data and run-time information in real-time. Post-run-time analysis of
host data for formal analysis can be compared with the original model data to verify the real-time
properties initially set by the designer.

4.2 The Rubus RTOS Product
While the Rubus Component Model developed utilizing Rubus Tool Suite is platform independent,
Arcticus supplies the Rubus RTOS that has been utilized in a wide variety of real-time applications.

Rubus Kernel that is integrated with the application software and further integrated into the customers
products.

Rubus Simulator that provides for testing and verifying the composite of the Rubus Kernel and
application software.

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 8

Rubus Kernel provides support for the Rubus Component Model (RCM) in achieving an optimal real-time
software system. The main features of the Rubus Kernel are:

 Support the execution of Time-Triggered Red threads.
 Support the execution of Interrupt-Triggered Green threads.
 Support execution of Event-Triggered Blue threads.
 Support communication between different types of threads.
 Support statically allocated resources.
 Support scalability and portability.
 Support the instrumentation of runtime analysis.

The combination of a dynamic and static scheduling supported by the Rubus Kernel enables the design of
optimal real-time software systems.

The Rubus Kernel can be ported to various targets and development environments on customer request
and includes, amongst others, Freescale MPC-processors, Texas DSP, Infineons xc167-processors and
various C-compiler environments such as Green Hills, WindRiver, Tasking, Microsoft VS and, GCC.

5 Contributions from Mälardalens University
Since the conception of the first Rubus products, cooperation with Mälardalen University (and other
academic institutions) has been of great importance to drive the development of the Rubus tool-suite.
Vice versa, experience and feedback from industrial use of Rubus have inspired many research projects
over the years. A graphic history of different component-models that have been developed in academia
and by Arcticus is shown in Figure 7.

Figure 7: Contributions to the Rubus Component Model.

As mentioned above, Rubus was initially developed from the joint academic and industrial project VIA
project BASEMENT and its conceptual component-model. In development of the first Rubus tools, MDH

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 9

researchers Christer Norström (former Eriksson) and Kristian Sandström developed the first scheduling
algorithms for the Red threads (see Eriksson, et al, 1997).

Later an SSF1 frame-project, SAVE, coordinated by Hans Hansson at MDH with partners from KTH,
Linköping University, and Uppsala University based the component-model SaveComp on the BASEMENT-
concept and the experiences from early Rubus models. In a technology-transfer project MULTEX, funded
by KKS2, MDH’s researchers Mikael Sjödin and Jukka Mäki-Turja worked with Arcticus to define the next
version of the Rubus Component Model (RCM) using concepts from SaveComp. This resulted in the first
Rubus-version where components could be used in Green, Red, and Blue threads.

In 2006 SSF granted another frame-project, PROGRESS, to MDH (also led by Hans Hansson) to continue
work on software engineering using component-based technologies. Again, results from PROGRESS,
specifically the ProComp component model, inspired further development of the Rubus Component
Model and a new technology-transfer project, EEMDEF, was granted to Jukka Mäki-Turja in 2009 by the
KKS. The EEMDEF project resulted in the extension of RCM and Rubus Tool Suite to support the modeling
and development of distributed embedded systems (Mubeen, et.al, 2014a).

Another KKS-funded project FEMMVA resulted in the extension of timing analysis framework of Rubus
Tool Suite to support the specification, analysis and validation of end-to-end path delay constraints namely
age and reaction. Further, the results of the project provided foundations for the translation of timing
constraints and design-level models from EAST-ADL (an architecture description language in the
automotive domain) to RCM (Mubeen, et.al, 2014b).

Since 2012, and the finalization for Rubus Component Model version 4, Arcticus have further intensified
the academic cooperation with MDH and with participation in several larger European projects. Many
projects are a result of the continued cooperation with MDH’s Mikael Sjödin and his research group Model-
Based Engineering of Embedded Systems (MBESS) that include senior researchers Jukka Mäki-Turja and
Saad Mubeen. Both Jukka and Saad have during the last years been employed by Arcticus as industrial
research-engineers and industrial PhD-students respectively. Both these industrial positions have been
funded by VR3. Other industrial PhD-students from MBEES that have been supported by Arcticus include
Kaj Hänninen and (ongoing) Alessio Bucaioni. Finally, a Worst Case Execution Time analysis project done
in cooperation with Björn Lisper provided an important step toward adding WCET analysis of the C-source
code as a complement to measurement on target processors.

6 Customer Projects
Each agreement to deliver and support a Rubus Software System Product results in the establishment of
a Project that is based upon the Customer Need and an Agreement as indicated in Figure 8.

1 Stiftelsen för Strategisk Forskning, Swedish foundation for strategic research
2 KK-stiftelsen, the Knowledge foundation
3 Vetenskapsrådet, the Swedish research council

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 10

Figure 8: Project Establishment.

In establishing a project, the Arcticus Quality Management System is used as the basis and then further
tailored to take account of customer requirements in respect to branch standards. This results in an
appropriate life cycle model and the processes to be followed in the project. The project often makes use
of the existing Rubus Software System Assets. Arcticus works closely with the customer during the project
in a manner similar to an Integrated Project Team (IPT).

6.1 Safety Standard ISO 26262
It is important to note that the Rubus Kernel has been approved as a certifiable ASIL D out of context
element for real-time systems according to the automotive ISO 26262 standard (Road vehicle – Functional
Safety). There is an ongoing project to certify the Rubus Tool Suite according to this standard.

7 On-Going Research and Development

7.1 DPAC
The objective of DPAC (2015-2023) acronym for “Dependable Platforms for Autonomous systems and
Control” is to enhance and establish a strong research profile at Mälardalens University (MDH), targeting
dependable platforms for autonomous systems2 and control. The new profile will strengthen the
interdisciplinary collaboration from five different research areas within the Embedded Systems (ES)
environment at MDH, thus, allowing for a holistic view on dependable platforms, and making new
collaborations and positive synergy effects possible.

Within DPAC, Arcticus participates in the project “Predictability and dependability in parallel
architectures”. This project includes a set of work packages that will contribute towards improved

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 11

software support for reconfigurable and dependable use of parallel architectures, ranging from
contemporary multi-parallel multicores to future hyper-parallel HSA chips.

7.2 EMC2
Arcticus participates in the EU ARTEMIS research project EMC² (2014-2017) acronym for “Embedded
Multi-Core systems for mixed criticality applications in dynamic and changeable real-time
environments”. The mixed criticality captures both static (pre-run-time configuration) as well as the
dynamic (run-time behaviour) criticality. The objective of the EMC² project is to foster these changes
through an innovative and sustainable service-oriented architecture approach for mixed criticality.

There is a clear trend towards mixed critical systems resulting in the need for certified run-time systems
as well as development models and tools to support the development of such systems. The software
complexity must be addressed by utilizing safe and sound run-time systems and models and tools.

The project has resulted in the evaluation of the Rubus component model in the context of mixed
criticality applications to be deployed on multi/many-core architectures. Strategies for partitioning and
assignment are being developed along with supporting methods for resource management and
scheduling.

As a result of this project, Arcticus is developing a hypervisor solution for Model Driven Development to
facilitate the implementation of various types of critical (safety critical) and non-critical applications.

7.3 CRYSTAL
Arcticus participates in the EU ARTEMIS project CRYSTAL (2013-2016) acronym for CRitical SYSTem
Enginieering AcceLeration.

CRYSTAL aims at fostering Europe’s leading edge position in embedded systems engineering in particular
regarding quality and cost effectiveness of safety-critical embedded systems and architecture platforms.

There is an ever increasing product variability and the need to speed up time-to-market and reduce
development time. The tighter the loop between design and design evaluation (analysis) the better the
overall design.

In this project Arcticus focuses upon model driven pre-run-time analysis in order to minimize post-built
system testing. Thus providing the software engineer with one holistic analysis framework.

Arcticus has extended the analysis algorithms (RAM) in the Rubus CM by enabling the seamless
combination of functional constraints and requirements with target environment constraints including
resources based on the latest EAST-ADL specification and the TADL2 timing model. The focus is placed
upon end-to-end analysis of data communication in distributed real-time systems as well as ability to
import and export EAST-ADL model files.

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 12

7.4 ASSUME
Arcticus also participates in the EU ITEA3 project ASSUME (2015-2018) acronym for Affordable Safe &
Secure Mobility Evolution.

The ASSUME project aims at providing a seamless engineering methodology for delivering trustworthy
new mobility assistance functions on multi and many core architectures. The problem is addressed on
the constructive and on the analysis side. For efficient construction and synthesis of embedded systems,
the project provides new tools, standards, a methodology and interoperability solutions to cover most of
the challenges by design. The project includes five countries with a total effort of 202 person years.

Arcticus has developed the Rubus environment for Model Driven, component-based development of
embedded real-time software. The supported development process includes a strict discipline for pre-
run-time analysis of real-time properties. This analysis requires WCET estimates for tasks. Currently
these have to be provided manually.

To allow for an automation of this provision, Arcticus will define and implement a plugin interface for
WCET analysis tools. This will be done in cooperation with Mälardalens University in Sweden, and the
interface will be validated using SWEET tool.

8 Acknowledgements
Arcticus thanks all of their customers and research and development partners for their active participation
in making Rubus the state-of-the-art products that they have become. In particular, KK-Stiftelsen, Vinnova
and SSF that have supported various projects. The significant contributions of research partners at
Mälardalen Univeristy is hereby acknowledged via the contributions of Hans Hansson, Christer Norström,
Kristian Sandström, Mikael Sjödin, Jukka Mäki-Turja, Kaj Hänninnen, Saad Mubeen and Björn Lisper. Harold
”Bud” Lawson has made important contributions to the evolution of the Rubus concepts as well as
developing the Arcticus Quality Management System and participating as the Safety Manager in the ISO
26262 certification of the Rubus Kernel.

9 References

Eriksson, C., Lawson, H. and Lundbäck, K-L. (1997) A Real-Time Kernel Integrated with an Off-
Line Scheduler, IFAC/IFIP Workshop on Algorithms and Architecture for Real-Time Control.

Hansson, H., Lawson, H., Strömberg, M., and Larsson, S. (1996a) BASEMENT: A Distributed
Real-Time Architecture for Vehicle Applications, Proceedings of the IEEE Real-Time
Applications Symposium, Chicago, IL, May 1995. Also appearing in Real Time Systems, The
International Journal of Time-Critical Computing Systems, Vol. 11. No. 3,

Hansson, H., Lawson, H., Bridal, O., Ericsson, C., Larsson, S., Lön, H., and Strömberg, M, (1996b)
BASEMENT: An Architecture and Methodology for Distributed Automotive Real-Time
Systems, IEEE Transactions on Computers, Vol. 46. No. 9

Confidential/proprietary information of Arcticus Systems AB is contained herein and may not be disclosed, displayed, used reproduced or copied

without prior written consent. Failure to comply with this notice may result in liability for costs, damages or losses.
© 2018, Arcticus Systems AB. All rights reserved. Rubus® is a registered trademark of Arcticus Systems. 13

Bohlin, M., Hänninen, K., Mäki-Turja, J., Carlson, J. and Sjödin, M. (2008) Bounding Shared-
Stack Usage in Systems with Offsets and Precedences, Euromicro Conference on Real Time
Systems, July, 2008.

Lawson, H., Wallin, S., Bryntse, B., and Friman, B. (2001) Twenty Years of Safe Train Control in
Sweden, Proceedings of the International Symposium and Workshop on Systems Engineering
of Computer Based Systems, Washington, DC.

Lawson, H, (2008) Provisioning of Safe Train Control in Nordic Countries, Keynote address
appearing in the Proceedings of HiNC2, History of Nordic Computing

Lawson, H. (2010) A Journey Through the Systems Landscape, College Publications Systems
Series, Volume 1, Kings College, London.

Lawson, H. and Lundbäck, K-L (2010) Provisioning of Highly Reliable Real-Time Systems,
appearing in the Proceedings of HiNC3, History of Nordic Computing

Mäki-Turja, J. and Sjödin, M. (2004) Tighter Response-Times for Tasks with Offsets, International
Conference on Real-time and Embedded Computing Systems and Applications Conference,
August, 2004.

Mubeen, S., Mäki-Turja, J. and Sjödin, M. (2013) Support for End-to-End Response-Time and
Delay Analysis in the Industrial Tool Suite: Issues, Experiences and a Case Study, Journal of
Computer Science and Information Systems, Vol. 10, No. 1.

Mubeen, S., Mäki-Turja, J. and Sjödin, M. (2014a) Communications-Oriented Development of
Component- Based Vehicular Distributed Real-Time Embedded Systems, Journal of Systems
Architecture, Vol. 60, No. 2, 2014, Elsevier.

Mubeen, S., Mäki-Turja, J. and Sjödin, M. (2014b) Component-Based Vehicular Distributed
Embedded Systems: End-to-end Timing Models Extraction at Various Abstraction Levels,
MRTC Report, Mälardalen University Sweden, 2014, MDH-MRTC-285/2014-1-SE.

Mubeen, S., Mäki-Turja, J. and Sjödin, M. (2015) Integrating mixed transmission and practical
limitations with the worst-case response-time analysis for Controller Area Network, Journal of
Systems and Software, Vol. 99, 2015, Elsevier.

